Computer Graphics

Lecture-11
 Two -Dimensional Viewing and Clipping

Md Imtiaz Ahmed
Lecturer
DIIT

Liang-Barsky Algorithm

- The following parametric equations represent a line from $(x 1, x 2)$ to ($x 2, y 2$) along with its infinite extension:

$$
\begin{aligned}
& x=x_{1}+\Delta x . u \\
& y=y_{1}+\Delta y . u
\end{aligned}
$$

- Where

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1} \\
& \Delta y=y_{2}-y_{1}
\end{aligned}
$$

Liang-Barsky Algorithm

- The line itself corresponds to $0<=u<=1$.
- U increasing from - ∞ to ∞
- First move from the outside to the inside of the clipping window's two boundary llines(bottom and left)
- Then move from the inside to the outside of the other two boundary

$$
x_{\min }
$$

Liang-Barsky Algorithm

- $\mathrm{u}_{1}=$ maximum $\left(0, \mathrm{u}_{\mathrm{p}}, \mathrm{u}_{\mathrm{b}}\right)$ and $\mathrm{u}_{2}=$ minimum $\left(1, \mathrm{u}_{\mathrm{t}}, \mathrm{u}_{\mathrm{r}}\right)$
- $\mathrm{u}, \mathrm{u}, \mathrm{ut}, \mathrm{ur}$ correspond to the intersection point of the extended line with the windoew's left, bottom, top, right boundary, respectively.

Top ($\left.x_{2,} y_{2}\right)$

Parametric Intersection

Liang-Barsky Algorithm

- For point (x, y) inside the clipping window, we have

$$
\begin{aligned}
& x_{\min } \leq x_{1}+u \Delta x \leq x_{\max } \\
& y_{\min } \leq y_{1}+u \Delta y \leq y_{\max }
\end{aligned}
$$

- Rewrite the four inequalities as

$$
u_{k} \leq q_{k}, \quad \mathrm{k}=1,2,3,4
$$

- Where

$$
\begin{array}{lll}
p_{1}=-\Delta x, & q_{1}=x_{1}-x_{\min } & \text { Left } \\
p_{2}=\Delta x, & q_{2}=x_{\max }-x_{1} & \text { Right } \\
p_{3}=-\Delta y, & q_{3}=y_{1}-y_{\text {min }} & \text { Buttom } \\
p_{4}=\Delta y & q_{4}=y_{\max }-y_{1} & \text { Top }
\end{array}
$$

Observation

- If $p_{k}=0$, the line is parallel to the corresponding boundary and $q_{k}<0$, the line is completely outside the boundary and can be eliminated $q_{k} \geq 0$, the line is inside the boundary and needs further consideration,
- If $p_{k}<0$, the extended line proceeds from the outside to the inside of the corresponding boundary line
- If $p_{k}>0$, the extended line proceeds from the inside to the outside of the corresponding boundary line
- When $p_{k} \neq 0$, the value of u that corresponds to the intersection point is q_{k} / p_{k}

Liang-Barsky - Algorithm

- If $p_{k}=0$ and $q_{k}<0$ for any k, eliminate the line and stop. Otherwise proceed to the next step.
- For all k such that $p_{k}<0$, calculate $r_{k}=q_{k} / p_{k}$. Let u_{1} be the maximum of the set containing 0 and the calculated r values.
- For all k such that $p_{k}>0$, calculate $r_{k}=q_{k} / p_{k}$. Let u_{2} be the minimum of the set containing 1 and the calculated r values.
- If $u_{1>} u_{2}$, eliminate the line since it is completely outside the clipping window. Otherwise, use u_{1} and u_{2} to calculate the end points of the clipped line.

Line Clipping - Liang-Barsky

- If $u 1>u 2$, the line lies completely outside of the clipping area.
- Otherwise the segment from u1 to u2 lies inside the clipping window.
if $\hat{u}_{1}>\hat{u}_{2}$, rejected.

Example

Let P1 (-1, -2), P2 $(2,4)$
$X_{\text {min }}=0, X_{\text {max }}=1, Y_{\text {min }}=0, Y_{\text {max }}=1$

- $d x=2-(-1)=3 ; d y=4-(-2)=6$
- $\quad P 1=-d x=-3 ; \quad q 1=x 1-X_{\text {min }}=-1-0=-1 ; \quad u_{1}=q 1 / P 1=1 / 3 \quad$ Left
- $\quad P 2=d x=3 ; \quad q 2=x_{\max }-x 1=1-(-1)=2 ; u_{2}=q 2 / P 2=2 / 3 \quad$ Right
- $\quad P 3=-d y=-6 ; \quad q 3=y 1-Y_{\min }=-2-0=-2 ; \quad u_{3}=q 3 / P 3=1 / 3 \quad$ Buttom
- $\quad P 4=d y=6 ; \quad q 4=Y_{\max }-y 1=1-(-2)=3 ; \quad u_{4}=q 4 / P 4=1 / 2 \quad$ Top
- for $(\operatorname{Pk}<0) \quad u^{\prime} 1=\operatorname{MAX}(1 / 3,1 / 3,0)=1 / 3$
- for $(\operatorname{Pk}>0) \quad u^{\prime} 2=\operatorname{MIN}(2 / 3,1 / 2,1)=1 / 2$ Since $u^{\prime} 1<u^{\prime} 2$ there is a visible section compute new endpoints
- $U^{\prime} 1=1 / 3$;
- $\quad x_{1}^{\prime}=x 1+d x \cdot u^{\prime} 1=-1+(3.1 / 3)=0$
- $\quad y 1^{\prime}=y 1+d y \cdot u^{\prime} 1=-2+(6.1 / 3)=0$
- $U^{\prime} 2=1 / 2$;
- $\quad x 2^{\prime}=x 1+d x . u^{\prime} 2=-1+(3.1 / 2)=1 / 2$
- $\quad y 2^{\prime}=y 1+d y \cdot u^{\prime} 2=-2+(6.1 / 2)=1$

Polygon Clipping

- Convex Polygonal Clipping Windows:
- A polygonal is called convex if the line joining any two interior points of the polygon lies completely inside the polygon
- A non convex polygon is said to be concave

Convex Polygon
Concave Polygon

Polygon Clipping

- A Polygon with vertices $\mathrm{P}_{1} \ldots . . \mathrm{P}_{\mathrm{N}}$ (and edges $\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}-1}$ and $P_{1} P_{N}$) is said to be positively oriented if a tour of the vertices in the given order produces a counterclockwise circuit.
- The left hand of a person standing along any directed edge $\overline{P_{i} P_{i-1}}$ or $\overline{P_{1} P_{N}}$ would be pointing inside the polygon.

Positive
Orientation

Polygon Clipping

- $A\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the end points of a directed line segment
- A point $p(x, y)$ will be to the left of the line segment if the expression $C=\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)$ is positive.
- The point is to the right of the line segment if this quantity is negative.
- If a point p is to the right of any one edge of a positively oriented, convex polygon, it is outside the polygon
- If it is to the left of every edge of the polygon, it is inside the polygon.

Positive Orientation

Negative Orientation

Polygon Clipping

- Find the Part of a Polygon Inside the Clip Window?

Polygon Clipping

- Find the Part of a Polygon Inside the Clip Window?

After Clipping

Sutherland-Hodgeman Polygon Clipping

- Let $P_{1} \ldots . . P_{N}$ be the vertex list of the polygon to be clipped. Let edge E , determined by endpoints A and B, be any edge of the positively oriented, convex clipping polygon.
- Clip each edge of the polygon in turn against the edge E of the clipping polygon, forming a new polygon whose vertices are determined as follows:

Sutherland-Hodgeman Polygon Clipping

- Consider the edge $\overline{\mathrm{P}_{\mathrm{i}-1} \mathrm{P}_{\mathrm{i}}}$
- If both P_{i-1} and P_{i} are to the left of the edge, vertex P_{i} is placed on the vertex output list of the clipped polygon
- If both P_{i-1} and P_{i} are to the right of the edge, nothing is placed on the vertex output list of the clipped polygon
- If both P_{i-1} to the left and P_{i} is to the right of the edge E, the intersection point / of the line segment $\overline{P_{i-1} P_{i}}$ with the extended edge E is calculated and placed on the vertex output list.
- If both P_{i-1} to the right and P_{i} is to the left of the edge E, the intersection point / of the line segment $P_{i-1} P_{i} \quad$ with the extended edge E is calculated. Both / and P_{i} are placed on the vertex output list.

Sutherland-Hodgeman Polygon Clipping

Sutherland-Hodgeman Polygon Clipping

- Clip to Each Window Boundary One at a Time

Sutherland-Hodgeman Polygon Clipping

- Clip to Each Window Boundary One at a Time

Sutherland-Hodgeman Polygon Clipping

- Clip to Each Window Boundary One at a Time

Sutherland-Hodgeman Polygon Clipping

- Clip to Each Window Boundary One at a Time

Sutherland-Hodgeman Polygon Clipping

- Clip to Each Window Boundary One at a Time

