Computer Graphics

Lecture-10
 Mathematics of Projection

Md Imtiaz Ahmed
 Lecturer, DIIT

Parallel Projection

- Parallel projection methods are used by drafters and engineers to create working drawings of an object which preserves its scale and shape.
- The complete representation of these details often requires two or more views(projections) of the object onto different view planes.

Parallel Projection

- Image points are found as the intersection of the view plane with a projector drawn from the object point and having a fixed direction.
- The direction of projection is the prescribed direction for all projectors.

Parallel Projection

- Center of projection is at infinity
- Direction of projection (DOP) same for all points

Parallel Projections

- Orthographic :
-Orthographic projections are characterized by the fact that the direction of projection is perpendicular to the view plane.
- Oblique : Non-orthographic parallel projections are called oblique parallel projections.

Orthographic Projections

- Orthographic (or orthogonal) projections:
- front elevation, top-elevation and side-elevation.
- all have projection plane perpendicular to a principle axes.
- Useful because angle and distance measurements can be made...

Orthographic Projections

- Orthogonal projections:

Orthographic Projections

- When the direction of projection is parallel to any of the principal axes, this produces the front, top, and side views of mechanical drawings (also referred to as multiview drawings).
- Axonometric projections are orthographic projections in which the direction of projection is not parallel to any of the three principal axes.

Axonometric projections

- Isometric: The direction of projection makes equal angles with all of the three principal axes.
- Dimetric: The direction of projection makes equal angles with exactly two of the principal axes.
- Trimetric: The direction of projection makes unequal angles with the three principal axes.

Oblique Projections

- Oblique parallel projections
- Objects can be visualized better than with orthographic projections
- Can measure distances, but not angles
- Can only measure angles for faces of objects parallel to the plane
- Common oblique parallel projections:
- Cavalier and Cabinet

Parallel Projections

- Cavalier:
- The direction of the projection makes a 45 degree angle with the projection plane.

Parallel Projections

- Cabinet:
- The direction of the projection makes a 63.4 degree angle with the projection plane. This results in foreshortening of the z axis, and provides a more "realistic" view.

Oblique Projections

- DOP not perpendicular to view plane

Cavalier (DOP $\alpha=45^{\circ}$)
$\tan (\alpha)=1$

Cabinet (DOP $\alpha=63.4^{\circ}$) $\tan (\alpha)=2$

Oblique Parallel Projections

- At $(0,0,1)$

$$
\begin{aligned}
& x_{s}=\lambda \cos \alpha \\
& y_{s}=\lambda \sin \alpha \\
& z_{s}=0
\end{aligned}
$$

- Generally
- multiply by z and allow for (non-zero) x and y

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{s}}=\mathrm{x}+\mathrm{z} \cdot \lambda \cdot \cos \alpha \\
& \mathrm{y}_{\mathrm{s}}=\mathrm{y}+\mathrm{z} \cdot \lambda \cdot \sin \alpha
\end{aligned}
$$

Oblique Parallel Projections

$$
\left(\begin{array}{c}
x_{s} \\
y_{s} \\
0 \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \lambda \cos \alpha & 0 \\
0 & 1 & \lambda \sin \alpha & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

