Chapter 3

Scan Conversion Lecture-02

Prepared By-
Md Imtiaz Ahmed

Bresenham's Line Algorithm

- Bresenham's line algorithm
- is a highly efficient incremental method for scanconverting lines.
- It produces mathematically accurate results using only integer addition, subtraction and multiplication by 2 , which can be accomplished by a simple arithmetic shift operation.

Bresenham's Line Algorithm

- Scan convert the line in the Figure,
- $0<m<1$.
- Start with pixel $\mathrm{P}^{1}\left(\mathrm{x}^{1}, y^{1}\right)$.
- Choose either the pixel on the right or the pixel right and up.
- The coordinates of the last chosen pixel upon entering step i are (x^{i}, y^{\prime}).
- Choose the next between the bottom pixel S and the top pixel T.
- If the chosen pixel is the top pixel $T\left(\mathrm{~d}^{\mathrm{i}} \geq 0\right)$
 then $x^{i+1}=x^{i}+1$ and $y^{i+1}=y^{i}+1$ and so
- $\mathrm{d}^{\mathrm{l}+1}=\mathrm{d}^{\mathrm{i}}+2(\Delta \mathrm{y}-\Delta \mathrm{x})$

Bresenham's Line Algorithm

- If the chosen pixel is pixel $S\left(\mathrm{~d}^{i}<0\right)$ then $x^{i+1}=x^{i}+1$ and $y^{i+1}=y^{i}$ and so
- $d^{i+1}=d^{i}+2 \Delta y$
- where $d^{i}=2 \Delta y * x^{i}-2 \Delta x * y^{i}+C$
- and $C=2 \Delta y+\Delta x(2 b-1)$
- We use here a decision variable di. For the value of each di we calculate the corresponding value of $\mathrm{d}^{\mathrm{i}+1}$.

Bresenham's Line Algorithm

- Void Bresenham()
- \{
- Line 1: $\mathrm{dx}=\mathrm{x} 2-\mathrm{x} 1$;
- Line 2: $d y=y 2-y 1$;
- Line 3: $\mathrm{dT}=2^{*}(\mathrm{dy}-\mathrm{dx})$;
- Line 4: $d S=2^{*} d y$;
- Line 5: $d=\left(2^{*} d y\right)-d x$;
- Line 6: putpixel(x1,y1);
- Line 7: while(x1<x2)
- Line 8: \{
- Line 9: x1++;
- Line 10: if($\mathrm{d}<0$)
- Line 11: \{
- Line 12: d=d+dS;
- Line 13: putpixel(x1,y1);
- Line 14: \}
- Line 15: else
- Line 16: \{
- Line 17: y1++;
- Line 18: d=d+dT;
- Line 19: putpixel(x1,y1);
- Line 20: \}
- Line 21: \}
- Line 22: putpixel(x2,y2);
- \}

Scan-Converting a Circle

Figure 3-18
Symmetry of a circle. Calculation of a circle point (x, y) in one octant yields the circle points shown for the other seven octants.

Midpoint Circle Algorithm

- We will first calculate pixel positions for a circle centered around the origin $(0,0)$. Then, each calculated position (x, y) is moved to its proper screen position by adding xc to x and yc to y
- Note that along the circle section from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{y}$ in the first octant, the slope of the curve varies from 0 to -1
- Circle function around the origin is given by

$$
\text { fcircle }(x, y)=x^{2}+y^{2}-r^{2}
$$

- Any point (x, y) on the boundary of the circle satisfies the equation and circle function is zero

Micosint circie Aigorithnn

- For a point in the interior of the circle, the circle function is negative and for a point outside the circle, the function is positive
- Thus,
$-f_{\text {circle }}(x, y)<0$ if (x, y) is inside the circle boundary
$-f_{\text {circle }}(x, y)=0$ if (x, y) is on the circle boundary
$-f_{\text {circle }}(x, y)>0$ if (x, y) is outside the circle boundary

Midpoint Circle Algorithm

- Assuming we have just plotted the pixel at $\left(x_{i} y_{i}\right)$, we next need to determine whether the pixel at position $\left(x_{i}+1, y_{i}-1\right)$ is closer to the circle
- Our decision parameter is the circle function evaluated at the midpoint between these two pixels

$$
p_{i}=f_{\text {circle }}\left(x_{i}+1, y_{i}-1 / 2\right)=\left(x_{i}+1\right)^{2}+\left(y_{i}-1 / 2\right)^{2}-r^{2}
$$

If $p_{i}<0$, this midpoint is inside the circle and the pixel on the scan line y_{i} is closer to the circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we select the pixel on the scan line $y_{i}-1$

Midpoint Circle Algorithm

- Successive decision parameters are obtained using incremental calculations

$$
\begin{aligned}
P_{i+1}= & f_{\text {circle }}\left(x_{i+1}+1, y_{i+1}-1 / 2\right) \\
& =\left[\left(x_{i+1}\right)+1\right]^{2}+\left(y_{i+1}-1 / 2\right)^{2}-r^{2}
\end{aligned}
$$

OR

$$
P_{i+1}=P_{i}+2\left(x_{i}+1\right)+\left(y_{i+1}^{2}-y_{i}^{2}\right)-\left(y_{i}+1-y_{i}\right)+1
$$

iWhere y_{i+1} is either y_{i} or y_{i-1} depending on the sign of p_{i}

- Increments for obtaining P_{i+1} :
$2 x_{i+1}+1$ if p_{i} is negative
$2 x_{i+1}+1-2 y_{i+1}$ otherwise

Midpoint circle algorithm

- Note that following can also be done incrementally:

$$
\begin{aligned}
& 2 x_{i+1}=2 x_{i}+2 \\
& 2 y_{i+1}=2 y_{i}-2
\end{aligned}
$$

- At the start position $(0, r)$, these two terms have the values 2 and $2 r-2$ respectively
- Initial decision parameter is obtained by evaluating the circle function at the start position $(x 0, y 0)=(0, r)$

$$
p_{0}=f_{\text {circle }}(1, r-1 / 2)=1+(r-1 / 2)^{2}-r^{2}
$$

OR

$$
P_{0}=5 / 4-r
$$

- If radius r is specified as an integer, we can round p_{0} to

$$
p_{0}=1-r
$$

Midpoint circle algorithm

```
Int \(\mathrm{x}=0, \mathrm{y}=\mathrm{r}, \mathrm{p}=1-\mathrm{r}\);
While ( \(x<=y\) )
\{
setPixel(x,y);
If(p<0)
\(\mathrm{p}=\mathrm{p}+2 \mathrm{x}+3\);
Else
\{
\(P=p+2(x-y)+5 ;\)
y--;
\}
X++;
\}
```


Midpoint Circle Algorithm

- Implicit of equation of circle is:

$$
x^{2}+y^{2}-R^{2}=0
$$

- Eight way symmetry \Rightarrow require to calculate one octant
- Define decision variable d as:

$$
\begin{array}{rlr}
d & =F(M)=F\left(x_{p}+1, y_{p}-\frac{1}{2}\right) & \\
& =\left(x_{p}+1\right)^{2}+\left(y_{p}-\frac{1}{2}\right)^{2}-R^{2} & \\
d & <0 & \\
& \Rightarrow M \text { is inside Circle } & \\
& \Rightarrow \text { Choose } E & \\
d & >0 & \\
& \Rightarrow M \text { is outside Circle } \quad & \\
& d=0
\end{array} \quad \Rightarrow \text { Choose either }
$$

Midpoint Circle Algorithm

- If $\mathrm{d}<=0$ then midpoint m is inside circle
- we choose E
- Increment x
- y remains unchanged

$$
\begin{aligned}
d & =\left(x_{p}+1\right)^{2}+\left(y_{p}-\frac{1}{2}\right)^{2}-R^{2} \\
d_{\text {new }} & =F\left(x_{p}+2, y_{p}-\frac{1}{2}\right) \\
& =\left(x_{p}+2\right)^{2}+\left(y_{p}-\frac{1}{2}\right)^{2}-R^{2} \\
d_{\text {new }}-d & =\underbrace{2 x_{p}+3}_{\Delta E} \\
d_{\text {new }} & =d+\Delta E
\end{aligned}
$$

Midpoint Circle Algorithm

- If $d>0$ then midpoint m is outside circle
- we choose E
- Increment x
- Decrement y

$$
\begin{aligned}
d & =\left(x_{p}+1\right)^{2}+\left(y_{p}-\frac{1}{2}\right)^{2}-R^{2} \\
d_{\text {new }} & =F\left(x_{p}+2, y_{p}-\frac{3}{2}\right) \\
& =\left(x_{p}+2\right)^{2}+\left(y_{p}-\frac{3}{2}\right)^{2}-R^{2} \\
d_{\text {new }}-d & =\underbrace{2 x_{p}-2 y_{p}+5}_{\Delta S E} \\
d_{\text {new }} & =d+\Delta S E
\end{aligned}
$$

Midpoint Circle Algorithm

Initial condition

- Starting pixel (0, R)
- Next Midpoint lies at (1, R-1/2)
- $d_{0}=F(1, R-1 / 2)=1+\left(R^{2}-R+1 / 4\right)-R^{2}=5 / 4-R$
- To remove the fractional value $5 / 4$:
- Consider a new decision variable h as, $\mathrm{h}=\mathrm{d}-1 / 4$
- Substituting \mathbf{d} for $\mathrm{h}+1 / 4$,
- $d_{0}=5 / 4-R \Rightarrow h=1-R$
- $\mathrm{d}<\mathbf{0} \Rightarrow \mathrm{h}<-1 / 4 \Rightarrow \mathrm{~h}<\mathbf{0}$
- Since h starts out with an integer value and is incremented by integer value ($\Delta \mathrm{E}$ or $\Delta \mathrm{SE}$), e can change the comparison to just $\mathrm{h}<0$

Midpoint Circle Algorithm

```
void MidpointCircle(int radius, int value) {
    int x = 0;
    int y = radius;
    int d=1 - radius ;
    CirclePoints(x, y, value);
    while (y>x) {
        if (d<0) { /* Select E */
            d += 2 * x + 3;
        } else {
                            /* Select SE */
            d+= 2*(x-y)+5;
            y--;
        }
        x++;
        CirclePoints(x, y, value);
    }
}
```

