DITT
 Daffodil Institute of IT

Daffodil Institute of Information Technology (DIIT)

Third Year, Sixth Semester
BBA (Honors) in Tourism and Hospitality Management (THM)
Fundamentals of Finance

Chapter-5

INTRODUCTION TO CAPITAL BUDGETING (Math)

1. An Engineering company is considering an investment proposal to install new equipment facility. The project will cost $\$ 1,00,000$. The facility has a life expected of 5 years and no salvage value. The company's tax rate is 40%. The firm uses straight line method of depreciation. The estimated gross cash inflow from the proposed investment proposal are as follows:

Year	Cash flow
1	20,000
2	30,000
3	28,000
4	30,000
5	40,000

You are required to compute the followings:-
(i) Average rate of return.
(ii) Net present values at 10% discount rate.
(iii) Internal rate of return.
(iv) Profitability index at 10% discount rate.

Workings-1: Calculation of Net cash Benefit

Table: Calculation of Net Cash Benefit

Year	Gross Cash	Depreciation	CFBT	Tax@40\%	EAT/NA	NCB
(1)	(2)	(3)	$4=(2-3)$	$5=(4 \times 40 \%)$	$6=(4-5)$	$7=(3+6)$
1	20000	20000	0	0	0	20000
2	30000	20000	10000	4000	6000	26000
3	28000	20000	8000	3200	4800	24800
4	30000	20000	10000	4000	6000	26000
5	40000	20000	20000	8000	12000	32000
Total						$\mathbf{= 2 8 8 0 0}$

Workings-2: Calculation of annual depreciation

Depreciation $=\frac{\text { Cost of the equipment-Salvage value }}{\text { Expected life of Mschine }}$

$$
\begin{aligned}
& =\frac{100000-0}{5} \\
& =20000
\end{aligned}
$$

Requirement-2: Calculation of Average rate of return (ARR)

$$
\begin{aligned}
\text { Average rate of return (ARR) }= & \frac{\text { Average Net Earnings }}{\text { Average Investment }} \times 100 \\
& =\frac{28800 \div 5}{100000 \div 2} \times 100 \\
& =\frac{5760}{50000} \times 100 \\
& =.1152 \times 100 \\
& =11.52 \% \text { Ans. }
\end{aligned}
$$

Average Investment $=$ Working Capital $+\frac{\text { Investment }+ \text { Salvage value/Scrap Value/Residual value }}{2}$

Requirement-2: Calculation of Net Present Value (NPV)

$$
\begin{aligned}
& \text { Net Present Value (NPV) }=\left[\frac{\mathrm{NCB}_{1}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{NCB}_{2}}{(1+\mathrm{i})^{2}}+------+\frac{\mathrm{NCB}_{\mathrm{n}}}{(1+\mathrm{i})^{\mathrm{n}}}\right]-\mathrm{NCO} \\
& \qquad \begin{aligned}
= & {\left[\frac{20000}{(1+.10)^{1}}+\frac{26000}{(1+.10)^{2}}+\frac{24800}{(1+.10)^{3}}+\frac{26000}{(1+.10)^{4}}+\frac{32000}{(1+.10)^{5}}-100000\right.} \\
& =95929.86086-100000 \\
& =-4070.13914 \\
& =-4070 \text { Ans. }
\end{aligned}
\end{aligned}
$$

Requirement-3: Calculation of Internal rate of return (IRR)

$$
\begin{aligned}
\text { Internal rate of return }(\mathbf{I R R}) & =\mathrm{Lr}+\frac{\mathrm{NPV}_{\mathrm{Lr}}}{\mathrm{NPV}_{\mathrm{Lr}}-\left(-\mathrm{NPV}_{\mathrm{Hr}}\right)} \times(\mathrm{Hr}-\mathrm{Lr}) \\
& =0.08+\frac{1386}{1386-(-4047)} \times(.10-.08) \\
& =.08+\frac{1386}{5456} \times .02 \\
& =.08+.254032 \times .02
\end{aligned}
$$

$$
=.08+.005080
$$

$$
=0.085080 \times 100
$$

$$
\begin{aligned}
& =8.50806 \\
& =8.51 \% \text { Ans }
\end{aligned}
$$

Workings-3

Let, Interest rate $=\mathbf{8 \%}$

Net Present Value (NPV) $=\left[\frac{\mathrm{NCB}_{1}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{NCB}_{2}}{(1+\mathrm{i})^{2}}+------+\frac{\mathrm{NCB}_{\mathrm{n}}}{(1+\mathrm{i})^{\mathrm{n}}}\right]-\mathrm{NCO}$

$$
\begin{aligned}
& =\left[\frac{20000}{(1+.08)^{1}}+\frac{26000}{(1+.08)^{2}}+\frac{24800}{(1+.08)^{3}}+\frac{26000}{(1+.08)^{4}}+\frac{32000}{(1+.08)^{5}}-100000\right. \\
& =101385.8059-100000 \\
& =1385.8059 \\
& =1386 \text { Ans. }
\end{aligned}
$$

Requirement-4: Calculation of Profitability Index (PI)
Profitability Index $(\mathrm{PI})=\frac{\text { Present value of all cash inflows }}{\text { Present value of all cash outflows }}$

$$
\begin{aligned}
& =\frac{95929.86086}{100000} \\
& =.95929 \times 100 \\
& =95.93 \% \text { Ans. }
\end{aligned}
$$

2. LAMSTEC BD. is considering investing in either of two mutually exclusive projects X and Y. the firm has 14% cost of capital and the risk-free rate is currently 9%. The initial investment, expected cash flows and certainty equivalent factors associated with each of the projects are shown in the following table:-

Initial Investment	Project X Tk. 40,000		Project Y Tk. 56,000	
Year	Cash inflows (Taka)	Certainty equivalent factors	Cash inflows (Taka)	Certainty equivalent factors
1	20,000	.90	20,000	.95
2	16,000	.80	25,000	.90
3	12,000	.60	15,000	.85
4	10,000	.50	20,000	.80
5	10,000	.40	10,000	.80

Requirement: You are required to calculate the certainty equivalent net present value for each project. Which is preferred using this risk-adjusted technique?

Project-X
Calculation of Certainty Equivalent Net Present Value:
$\mathrm{CENPV}=\left[\frac{\mathrm{CE}_{1} \times \mathrm{CF}_{1}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{CE}_{2} \times \mathrm{CF}_{2}}{(1+\mathrm{i})^{2}}+-----+\frac{\mathrm{CE}_{\mathrm{n}} \times \mathrm{CF}_{\mathrm{n}}}{(1+\mathrm{i})^{\mathrm{n}}}\right]-$ NCO C
$=\left[\frac{90 \times 20000}{(1+)^{1}}+\frac{.80 \times}{(1+\mathrm{i})^{2}}+----+\frac{\mathrm{CE}_{\mathrm{n}} \times \mathrm{CF}_{\mathrm{n}}}{(1+\mathrm{i})^{\mathrm{n}}}\right]-\mathrm{NCO} \mathrm{C}$

Where,
CF $=$ Cash Flows
$\mathrm{CE}=$ Certainty Equivalent
NCO= Net Cash Outflow
I= Interest Rate

