

Daffodil Institute of Information Technology (DIIT)

Third Year, Sixth Semester BBA (Honors) in Tourism and Hospitality Management (THM)

Fundamentals of Finance

Chapter-5

INTRODUCTION TO CAPITAL BUDGETING (Math)

An Engineering company is considering an investment proposal to install new equipment facility. The project will cost \$ 1,00,000. The facility has a life expected of 5 years and no salvage value. The company's tax rate is 40%. The firm uses straight line method of depreciation. The estimated gross cash inflow from the proposed investment proposal are as follows:

Year	Cash flow		
1	20,000		
<mark>2</mark>	<mark>30,000</mark>		
<mark>3</mark>	<mark>28,000</mark>		
<mark>4</mark>	<mark>30,000</mark>		
<mark>5</mark>	<mark>40,000</mark>		

You are required to compute the followings:-

- (i) Average rate of return.
- (ii) Net present values at 10% discount rate.
- (iii) Internal rate of return.
- (iv) Profitability index at 10% discount rate.

Workings-1: Calculation of Net cash Benefit

Table: Calculation of Net Cash Benefit

Year	Gross Cash	Depreciation	CFBT	Tax@40%	EAT/NA	NCB
(1)	(2)	(3)	4=(2-3)	5=(4×40%)	6=(4-5)	7=(3+6)
<mark>1</mark>	20000	<mark>20000</mark>	<mark>0</mark>	0	0	20000
<mark>2</mark>	30000	<mark>20000</mark>	<mark>10000</mark>	4000	6000	26000
<mark>3</mark>	28000	<mark>20000</mark>	<mark>8000</mark>	3200	4800	24800
<mark>4</mark>	30000	<mark>20000</mark>	<mark>10000</mark>	4000	6000	26000
<mark>5</mark>	40000	20000	<mark>20000</mark>	8000	12000	32000
Total					=28800	

Workings-2: Calculation of annual depreciation

Depreciation= Cost of the equipment-Salvage value
Expected life of Mschine

$$=\frac{100000-0}{5} = 20000$$

Requirement-2: Calculation of Average rate of return (ARR)

Average rate of return (ARR) =
$$\frac{\text{Average Net Earnings}}{\text{Average Investment}} \times 100$$
$$= \frac{28800 \div 5}{100000 \div 2} \times 100$$
$$= \frac{5760}{50000} \times 100$$
$$= .1152 \times 100$$
$$= 11.52\% \text{Ans.}$$

Average Investment= Working Capital + Investment+Salvage value/Scrap Value/Residual value

Requirement-2: Calculation of Net Present Value (NPV)

Net Present Value (NPV) =
$$\left[\frac{\text{NCB}_{1}}{(1+i)^{1}} + \frac{\text{NCB}_{2}}{(1+i)^{2}} + \dots - \dots - \dots + \frac{\text{NCB}_{n}}{(1+i)^{n}}\right] - \text{NCO}$$

= $\left[\frac{20000}{(1+.10)^{1}} + \frac{26000}{(1+.10)^{2}} + \frac{24800}{(1+.10)^{3}} + \frac{26000}{(1+.10)^{4}} + \frac{32000}{(1+.10)^{5}} - 100000\right]$
=95929.86086-100000
= - 4070.13914
= - 4070 Ans.

Requirement-3: Calculation of Internal rate of return (IRR)

Internal rate of return (IRR) =Lr + $\frac{NPV_{Lr}}{NPV_{Lr} - (-NPV_{Hr})} \times (Hr-Lr)$ = $\frac{0.08 + \frac{1386}{1386 - (-4047)} \times (.10 - .08)}{= .08 + \frac{1386}{5456} \times .02}$ = $.08 + .254032 \times .02$

Workings-3

Let, Interest rate= 8%

Net Present Value (NPV) =
$$\left[\frac{\text{NCB}_{1}}{(1+i)^{1}} + \frac{\text{NCB}_{2}}{(1+i)^{2}} + \dots - \dots - \dots + \frac{\text{NCB}_{n}}{(1+i)^{n}}\right] - \text{NCO}$$

= $\left[\frac{20000}{(1+.08)^{1}} + \frac{26000}{(1+.08)^{2}} + \frac{24800}{(1+.08)^{3}} + \frac{26000}{(1+.08)^{4}} + \frac{32000}{(1+.08)^{5}} - 100000\right]$
= 101385.8059 - 100000
= 1385.8059
= 1386 Ans.

Requirement-4: Calculation of Profitability Index (PI)

Profitability Index (PI) = $\frac{\text{Present value of all cash inflows}}{\text{Present value of all cash outflows}}$ = $\frac{95929.86086}{100000}$ = $.95929 \times 100$ = 95.93% Ans. LAMSTEC BD. is considering investing in either of two mutually exclusive projects X and Y. the firm has 14% cost of capital and the risk-free rate is currently 9%. The initial investment, expected cash flows and certainty equivalent factors associated with each of the projects are shown in the following table:-

Initial Investment	Project X	<mark>K</mark> Tk. <mark>40,000</mark>	Project Y Tk. <mark>56,000</mark>		
Year	Cash inflows	Certainty	Cash inflows	Certainty	
	(Taka)	equivalent factors	(Taka)	equivalent factors	
1	20,000	<mark>.90</mark>	20,000	<mark>.95</mark>	
2	16,000	<mark>.80</mark>	25,000	<mark>.90</mark>	
3	12,000	<mark>.60</mark>	15,000	<mark>.85</mark>	
4	10,000	<mark>.50</mark>	20,000	<mark>.80</mark>	
5	10,000	<mark>.40</mark>	10,000	<mark>.80</mark>	

Requirement: You are required to calculate the certainty equivalent net present value for each project. Which is preferred using this risk-adjusted technique?

Project-X

Calculation of Certainty Equivalent Net Present Value:

$$CENPV = \left[\frac{CE_1 \times CF_1}{(1+i)^1} + \frac{CE_2 \times CF_2}{(1+i)^2} + \dots + \frac{CE_n \times CF_n}{(1+i)^n}\right] - NCOC$$
$$= \left[\frac{90 \times 20000}{(1+)^1} + \frac{.80 \times}{(1+i)^2} + \dots + \dots + \frac{CE_n \times CF_n}{(1+i)^n}\right] - NCOC$$

Where,

CF= Cash Flows CE= Certainty Equivalent NCO= Net Cash Outflow I= Interest Rate