Daffodil Institute of Information Technology (DIIT)

Third Year, Sixth Semester
BBA (Honors) in Tourism and Hospitality Management (THM) Fundamentals of Finance

Chapter-5

INTRODUCTION TO CAPITAL BUDGETING

Formula of Introduction to Capital Budgeting

1. For uniform cash inflow

Payback period $(\mathrm{PBP})=\frac{\text { Initial Investment }}{\text { Average cash flow }}$
2. For not uniform cash inflow

Payback period $(P B P)=A+\frac{\mathrm{NCO}^{2}-\mathrm{CNCB}_{A}}{\mathrm{NCB}_{\text {Next }}}$
$\mathrm{A}=$ Year preceding the payback period.
NCO = Net cash outflow/initial investment/initial outlay/cash outflow/cost of machine/cost of project/opening for beginning capital.
$\mathrm{CNCB}_{\mathrm{A}}=$ Cumulative net cash flow of year A.
$\mathrm{NCB}_{\text {Next }}=$ Net cash flow of the immediate year following the year A .
Depreciation $=\frac{\text { Cost of the Equipment }- \text { Salvage value } / \text { Scrap value } / \text { Residual value }}{\text { Expected life of the Equipment }}$
3. Average rate of return $(A R R)=\frac{\text { Average Net Earnings/Average Net Profit After Tax }}{\text { Average Investment }} \times 100$

Average Investment $=$ Working Capital $+\frac{\text { Investment }+ \text { Salvage value/Scrap Value/Residual value }}{2}$
4. Net Present Value $(\mathrm{NPV})=\left[\frac{\mathrm{NCB}_{1}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{NCB}_{2}}{(1+\mathrm{i})^{2}}+------+\frac{\mathrm{NCB}_{1}}{(1+\mathrm{i})^{1}}\right]-\mathrm{NCO}$

NCB $=$ Net cash Benefit/ Net Expected Cash Flows/ Cash Inflows/ Cash Flows after
Tax (CFAT)
NCO = Net Cash Outflow/ Initial Investment
i = Interest Rate/ Discount Rate/ Required Rate of Return/ Opportunity Cost/ Cut off Rate/Hurdle rate
5. Certainty Equivalent Net Present Value(CENPV) $=\left[\frac{\mathrm{CEF}_{1} \times \mathrm{CIF}_{1}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{CEF}_{2} \times \mathrm{CIF}_{2}}{(1+\mathrm{i})^{2}}+----\right.$ $\left.-+\frac{\mathrm{CEF}_{\mathrm{n}} \times \mathrm{CIF}_{\mathrm{n}}}{(1+\mathrm{i})^{\mathrm{n}}}\right]-\mathrm{NCO}$

Where,
CIF= Cash Inflows / Net cash Inflows/ Net cash Benefit/ Net Expected Cash Flows/ Cash Flows after Tax (CFAT)

> NCO= Net Cash Outflow/ Initial Investment I= Interest Rate/Discount Rate/Required Rate of Return/Opportunity Cost/Cutoff Rate/ Hurdle Rate/ Cost of Capital.
6. Internal Rate of Return(IRR) $=\mathrm{Lr}+\frac{\mathrm{NPV}_{\mathrm{Lr}}}{\mathrm{NPV}_{\mathrm{Lr}}-\left(-\mathrm{NPV}_{\mathrm{Hr}}\right)}(\mathrm{Hr}-\mathrm{Lr})$

Lr= Lower Discount Rate
$\mathrm{Hr}=$ Higher Discount Rate
$\mathrm{NPV}_{\mathrm{Lr}}=$ Net Present Value of lower discount Rate.
$\mathrm{NPV}_{\mathrm{Hr}}=$ Net Present Value of higher discount Rate
7. Profitability Index(PI)/Benefit Cost Ratio $(\mathrm{BC})=\frac{\text { Present value of all cash inflows }}{\text { Present value of all cash outflows }}$
8. Return on Original Investment $(\mathrm{ROI})=\frac{\text { Average net profit after tax }}{\text { Original Investment }} \times 100$
9. Modified Internal Rate of Return (MIRR)

$$
\mathrm{PV}=\frac{\text { Future Value }}{(1+\mathrm{MIRR})^{\mathrm{n}}}
$$

$\mathrm{FV} / \mathrm{TV}=\mathrm{NCB}_{1}(1+\mathrm{i})^{2}+\mathrm{NCB}_{2}(1+\mathrm{i})^{1}+\mathrm{NCB}_{3}(1+\mathrm{i})^{0}$
$\mathrm{PV}=$ Initial Investment

Or.
$\operatorname{MIRR}=\sqrt[n]{\frac{T V}{P V \cos t}}-1$
Where,
$\mathrm{n}=$ Number of Years
TV/FV= Terminal Value/ Future Value
PV= Initial cost/ Investment
10. Net Profitability Index $(\mathrm{NPI})=\frac{\text { Net Present Value }}{\text { Present value of all cash outflows }}$

